Systems, Networks & Concurrency 2020

Data Parallelism

Uwe R. Zimmer - The Australian National University

Data Parallelism

References

[Bacon98]
J. Bacon
Concurrent Systems
1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

[Ada 2012 Language Reference Manual]
see course pages or http://www.ada-auth.org/standards/ada12.html

[Chapel 1.13 Language Specification Version 0.981]
see course pages or

http://chapel.cray.com/docs/latest/_downloads/chapelLanguageSpec.pdf
released on 7. April 2016

© 2020 Uwe R. Zimmer, The Australian National University page 397 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines
Vectorization
type Real_Precision = Float
type Scalar = Real_Precision
type Vector = [Real_Precision]
scale :: Scalar -> Vector -> Vector

scale scalar vector = map (scalar *) vector

© 2020 Uwe R. Zimmer, The Australian National University page 398 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Vectorization

Potentially concurrent, yet:

type Real_Precision = Float Executed sequentially.
type Scalar = Real_Precision

type Vector = [Real_Precision]

scale :: Scalar -> Vector -> Vector
scale scalar vector = map (scalar *) vector

© 2020 Uwe R. Zimmer, The Australian National University page 399 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Vectorization
import Control.Parallel.Strategies Executed Ta para”eL
type Real_Precision = Float
type Scalar = Real_Precision
type Vector = [Real_Precision]
scale :: Scalar -> Vector -> Vector

scale scalar vector = parMap rpar (scalar *) vector

This may be faster or slower
than a sequential execution.

© 2020 Uwe R. Zimmer, The Australian National University page 400 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Vectorization

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function Scale (Scalar : Real; Vector : Vectors) return Vectors is

Scaled_Vector : Vectors (Vector’Range);

begin
for i in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (1i);
end loop;
return Scaled_Vector;
end Scale;

© 2020 Uwe R. Zimmer, The Australian National University page 401 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines
Buzzword collection:
N AltiVec, SPE, MMX, SSE,
Vectorization NEON, SPU, AVX, ...

Translates into
CPU-level vector operations

type Real is digits 15;
type Vectors is array (Positive range <>) of Real;

function Scale (Scalar : Real; Vector : Vectors) return Vectors is

Scaled_Vector : Vectors (Vector’Range);

begin
for 1 in Vector’Range loop
Scaled_Vector (i) := Scalar * Vector (1i);
end loop; Combined with
return Scaled_Vector; in-lining, loop unrolling and caching
end Scale;) this is as fast as a single CPU will get.

© 2020 Uwe R. Zimmer, The Australian National University page 402 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Vectorization

Function is
”promoted”

const Index = {1 .. 100000000},

Vector : [Index] real = 1.0,
Scale : real = 5.1,

Scaled : [Vector] real = Scale * Vector;

© 2020 Uwe R. Zimmer, The Australian National University page 403 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

C Vectorization

Function is
”promoted"

const Index = {1 .. 100000000},

Vector : [Index] real = 1.0,
Scale : real = 5.1,

Scaled : [Vector] real = Scale * Vector;

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

© 2020 Uwe R. Zimmer, The Australian National University page 404 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&) True $ zipWith (==) v_1 v_2

© 2020 Uwe R. Zimmer, The Australian National University page 405 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal v_1 v_2 = foldr (&) True $ zipWith (==) v_1 v_2

Potentially concurrent, yet:

Executed lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 406 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real_Precision = Float
type Vector = [Real_Precision]

equal :: Vector -> Vector -> Bool
equal = (==)

Potentially concurrent, yet:

Executed lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 407 of 758 (chapter 5: “Data Parallelism” up to page 427)

s

=iz

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

© 2020 Uwe R. Zimmer, The Australian National University page 408 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 409 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines
Reduction
Infinite
type Real is digits 15; recursion
type Vectors 1is array (Positive range <>) of Real; \
function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 410 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function Equal (Vector_1, Vector_2 : Vectors) return Boolean is (Vector_1 = Vector_2);

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 411 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function Equal (Vector_1, Vector_2 : Vectors) return Boolean renames ”=";

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 412 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

type Real is digits 15;
type Vectors 1is array (Positive range <>) of Real;

function ”=" (Vector_1, Vector_2 : Vectors) return Boolean is
(for all i in Vector_1’Range => Vector_1 (i) = Vector_2 (i));

Translates into
CPU-level vector operations

A-chain is evaluated lazy sequentially.

© 2020 Uwe R. Zimmer, The Australian National University page 413 of 758 (chapter 5: “Data Parallelism” up to page 427)

const Index

Data Parallelism

Vector Machines

Reduction

{1 .. 100000000},

Vector_1, Vector_2 : [Index] real = 1.0;

proc Equal (v1, v2) : bool
{return && reduce (vl == v2);}

/

Function is
”promoted”

© 2020 Uwe R. Zimmer, The Australian National University

page 414 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines
' '\
C, : Reduction
const Index = {1 .. 100000000}, /_operations are

Vector_1 2 ¢ [I = 1.0; :
e evaluated in a concurrent
proc Equal (v1, v2) : bool

{return && reduce (v1 == v2);} divide-and-conquer

/ (binary tree) structure.

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

Function is
”promoted”

© 2020 Uwe R. Zimmer, The Australian National University page 415 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

Reduction

const Index = {1 .. 100000000},
Vector_1, Vector_2 : [Index] real = 1.0;

et W1 = 2}
mismatch
{return v1 == v2;} — —» | Type

writeln (Equal (Vector_1, Vector_2));

© 2020 Uwe R. Zimmer, The Australian National University page 416 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

General Data-parallelism

© 2020 Uwe R. Zimmer, The Australian National University page 417 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

2N
C_; General Data-parallelism

© 2020 Uwe R. Zimmer, The Australian National University page 418 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

2N
C; General Data-parallelism

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @), (-1, 5, -1), (0, -1, 0));

© 2020 Uwe R. Zimmer, The Australian National University page 419 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

2N
C; General Data-parallelism

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask x P [i -1 .. 1 +1, Jj-1..3+1D;}

© 2020 Uwe R. Zimmer, The Australian National University page 420 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

2N
C; General Data-parallelism

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask x P [i -1 .. 1 +1, Jj-1..3+1D;}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

© 2020 Uwe R. Zimmer, The Australian National University page 421 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

General Data-parallelism

Translates into CPU-level vector operations
as well as multi-core or
fully distributed operations

const Mask : [1 .. 3, 1 .. 3] real = ((0, -1, @), (-1, 5, -1), (0, -1, 0));

proc Unsharp_Mask (P, (i, j) : index (Image)) : real
{return + reduce (Mask x P [i -1 .. 1 +1, Jj-1..3+1D;}

const Sharpened_Picture = forall px in Image do Unsharp_Mask (Picture, px);

© 2020 Uwe R. Zimmer, The Australian National University page 422 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

2N
C_;/ General Data-parallelism

© 2020 Uwe R. Zimmer, The Australian National University page 423 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

C_;/ General Data-parallelism

Cellular automaton transitions from a state S into the next state S”
S > 8 © Vec&E S:c— c = 1S,c) i.e.all cells of a state
transition concurrently into new cells by following a rule 1.

© 2020 Uwe R. Zimmer, The Australian National University page 424 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

C_;/ General Data-parallelism

Cellular automaton transitions from a state S into the next state S”
S > 8 © Vec&E S:c— c = 1S,c) i.e.all cells of a state
transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

© 2020 Uwe R. Zimmer, The Australian National University page 425 of 758 (chapter 5: “Data Parallelism” up to page 427)

Data Parallelism

Vector Machines

C_;/ General Data-parallelism

Cellular automaton transitions from a state S into the next state S”
S > 8 © Vec&E S:c— c = 1S,c) i.e.all cells of a state
transition concurrently into new cells by following a rule 1.

Next_State = forall World_Indices in World do Rule (State, World_Indices);

John Conway’s Game of Life rule:
proc Rule (S, (i, j) : index (World)) : Cell {
const Population : index ({@ .. 9}) =
+ reduce Count (Cell.Alive, S[i -1 ..1+1, J-1..3+11D);

return (if Population ==
|| (Population == 4 & & S [i, j] == Cell.Alive) then Cell.Alive
else Cell.Dead);

}

© 2020 Uwe R. Zimmer, The Australian National University page 426 of 758 (chapter 5: “Data Parallelism” up to page 427)

e Data-Parallelism
e \ectorization
e Reduction
e General data-parallelism

e Examples
* Image processing
e Cellular automata

Data Parallelism

Summary

Data Parallelism

© 2020 Uwe R. Zimmer, The Australian National University

page 427 of 758 (chapter 5: “Data Parallelism” up to page 427)

